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Walking solitons in type Il second-harmonic generation

D. Mihalache! D. Mazilu! L.-C. Crasovart,and L. Tornef
!Department of Theoretical Physics, Institute of Atomic Physics, Bucharest, Romania
’Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, Barcelona, ES 08034, Spain
(Received 14 July 1997

We find the families of spatial walking solitons propagating in quadratic nonlinear media under conditions
for type Il second-harmonic generation in the presence of Poynting vector walk-off between the interacting
beams. The analytical stability criterion for these three-parameter vector solitons is established. We study the
shape and general properties of the solitons and their stability on propagation. It is found that the stationary
solutions arestableat moderate positive phase mismatch. At phase matching and negative phase mismatch
there are some unstable solutions near the cUi6ff063-651X97)51612-9

PACS numbes): 42.65.Tg, 03.40.Kf, 42.65.Ky

Parametric optical solitons in quadratic nonlinear mediaderive the cutoff conditions for the families of solutions, give
[1] have attracted growing attention, because of their poterthe stability criterion for the three-parameter family of soli-
tial applications to the manipulation of light signals in dif- tons, and verify numerically its predictions.
ferent scenariof2—9]. Such solitons exist in a wide variety ~ The normalized evolution equations for the slowly vary-
of material and input light conditions in both bulk crystals ing field envelopes in type Il phase-matching geometries for
and planar waveguides, and recently spatial solitons consistecond-harmonic generation can be written as
ing of two strongly coupled optical fields have been observed
experimentally in second-harmonic generatiaiSHG) da, a d*a, . )

[10,11). Another recent contribution to this rapidly develop- ' T 2 E*’ai&az exp—ip¢)=0,

ing field is the demonstration of the spatial modulational

instability of wide elliptical beams and multisoliton genera- J 7 ;

tion in quadratic nonlinear medigl2]. In general, except 08 ap o8y . Jap * . _

under suitable conditions, in the low-power regime the para- ' 9 2 E_Iﬁngraﬁl exp—i146)=0, (1)

metrically interacting beams propagate along different direc-

tions due to the Poynting vector walk-off present in aniso- 5

tropic media. However, when a soliton is formed the beams i@— @3 %—iﬁ @Jra a, exp(i B€)=0
. . 3 192 ’

mutually trap and in the presence of Poynting vector walk- 9 2 ps? s

off they propagate locked together. Such a beam locking

opens the possibility to specific applications of the solitonsyherea,, a,, anda; are the normalized envelopes of the

[13,14, and it also poses new questions to the understandingrdinary polarized FF beam, the extraordinary polarized FF

of the soliton formation. The “walking” solitons existing in  beam, and the SH beam, respectively. For spatial solitons

the presence of walk-off exhibit new features in comparisorand for the relevant experimental conditigiascharacteristic

to the nonwalking solitons, and investigation of these feabeam widthy~15 um, a coherence length~2.5 mm, a

tures is important from both applied and fundamental viewiffraction lengthl;~1 mm, and a walk-off angle~1°)

points. This is so because the approach has implications tne obtains a;=—1, a,=k;/k,=—1, and az=Kk,/ks

walking solitons existing in other physical settings, such as~ —0.5, the mismatch paramet@~ =+ 3, the walk-off pa-

birefringent optical fiber§l5]. To date, two-parameter fami- rameterss, s~ =1 andé=20 correspond to a few centime-

lies of spatial walking solitons in quadratically nonlinear me-tgrs. Equétions(l) have several conserved quantities,

dia have been studied under conditions for type | phas@amely, the total energy flow

matching, in both (1+1)-dimensional [16] and (2+1)-

dimensional geometrigldl 7]. Two-parameter families ofl 1 1

+1)-dimensional temporal chirped solitons in nonlinear qua- |=|1+|2+|3=j (§|A1|2+§|A2|2+|A3|2>ds, 2

dratic media have been also investigated by using a

somewhat different approa¢h8].

In this Rapid Communication we investigate the forma-
tion of spatial walking solitons under conditions for type I
SHG,; therefore, the solitons exist due to the mutual trapping
of an ordinary polarized fundamental frequen&F) beam, J=J,+Jp+ Jg= if
an extraordinary polarized FF beam, and the extraordinary 4i
polarized second harmon{§H) beam. Such solitons consti-
tute a three-parameter family and they exist for different total
energy, for different unbalancing energy between the two
fundamental beams, and for different soliton velocities. We
study the amplitude and phase-front shapes of the solitongnd the Hamiltonian

the energy unbalancinig=1,—1,, the transverse beam mo-
mentum
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FIG. 1. Amplitude and local phase-front tilt of two
solitons walking with different velocities at negative
0 . wave vector mismatch, versus transverse coordinate. In
both casegg= -3, x;=3, and«;/k,=0.5. In(a) and
(b) v=1. In (c) and(d) v=2(1— 3). Solid lines: or-
dinary polarized FF waves; dashed lines: extraordinary
N polarized FF waves; dotted lines: extraordinary polar-
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" 1f ar|0AL|2  ay|9AL|2 s A2 A2 of walking soliton; has nontrivial, curved phase—fronts.'The
=73 2| 95 2 gs 21 gs BlAs| local phas_e-frqnt tilts are defined d$,/d», v=1,2,3. Their
values at infinity are as follows-v/ay, —(d,+tv)/a, and
i dA; A, —(83+v)! az. Families of type 1l SHG walking solitons pa-
H(ATAZ A3+ AIAAS) + 552(A2—075 Al rametrized by the nonlinear wave-number shifisand «,

and soliton velocityv exist at different values of material

n i_5 (A ﬂ—A* (9_A3) ds @ parametersy, 3, 8, and 8,3, with different energy flows,
273\ "B 9s T8 s ’ and in a domain of parameter space («,,v) such that
k1= —0%(2ay), k,=—(v+8,)%(2a,), and i+ k=
where we have definedA;=a;, A,=a,, and A, —-B—(v+ 53)2/(2a3). We will make numerical calculations
=azexp(—ipBe). on “slices” of the above three-dimensional parameter do-

We study stationary solutions of Eqgl) of the form  main. Thus, calculating on the lines,=p«,, and varying
a,(&s)=U, (nexdi¢(&n)], v=1,2,3, withU and ¢ be- k1, p, andv we cover the entire three-dimensional parameter
ing real functions,y=s—uv¢ is the transverse coordinate domain. In the absence of walk-off, zero-velocity type II
moving with the soliton peak, and,(¢,s)=«,&+f, (7). SHG parametric solitons were recently investigai@cB].
Herev is the soliton velocity«, the nonlinear wave-number The shape of the walking solitons depends strongly on the
shifts produced by the wave interaction, and») stand for  various parameters involved, and in particular on their veloc-
the transverse phase-fronts of the solitons. A simple analysisy. For numerical calculations we set;=a,=—1, az=
of the above equations shows that in order to avoid all power-0.5, ands,= 8;=1. In Fig. 1 we have plotted the ampli-
exchange between the waves one first neegls k,+«,  tude and the local phase-front tilt for two representative soli-
+B. Also the phase-fronts should verify eithdi(7) tons in the case of negative phase mismatch. For the param-
=fi(n)+fy(n) everywhere or alternativelJ, () and eters chosen in Figs.(d-1(d), although the mismatch is
f,(7) have to be symmetric and antisymmetric functions ofnegative the amplitude of the ordinary polarized FF beam is
7, respectively. Only the trivial traveling-wave solution that larger than the amplitude of the SH beam. Notice that the
occurs in the absence of the walk-off fulfills the former con-two solitons plotted in Fig. 1 correspond to the same wave-
dition, whereas the walking solitons fulfill the latter. The number shiftsc, ,, but that they carry significantly different
trivial traveling-wave solution, which has no physical rel- total energies.
evance unlessr;=—0.5 and there is no walk-off, has flat ~ Stationary, walking soliton solutions of Eg4) exist for
phase-frontsf ()= w,n, where w;=—-v/a;, w,=—(8,  nonlinear wave-number shifts;, x, and transverse veloci-
+v)/a,, w3=—(83+v)/az. The physically relevant family ties v such that the soliton is not in resonance with linear
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FIG. 2. Nonlinear wave numbex; as a function of

g the energy flow for the families of walking solitons for
[ different soliton velocities. In all cases,=2«,. (&
2l L A v The solitons at negative phase mismatgh=(—3); (b)
¢ v=2(1-43) the solitons at positive phase mismatgh<«3). Dashed
g N lines: unstable solutions. Dotted lines: nonwalking soli-
v=0
------------------------------------- tons (8,= 83=0, andv=0).
0 05 100
0 energy flow 100 0 energy flow

dispersive waves. Otherwise, the coupling between théows. The dynamical equation€l) constitute an infinite-
waves would lead to energy leakage that would appear adimensional Hamiltonian system and can be written in the
Cherenkov radiation emitted from the solitt8]. When the  canonical formi A, /9é=28:H/ 8cA% , v=1,2,3, wheresg
ratio of the two wave numbers,, «, is fixed, the resonance stands for the Fihet derivative. The stationary walking
condition can be calculated to obtain solitons occur at the extrema of the Hamiltonian for given
energy flowsl ,=1,+15/2,1,=1,+15/2, and a given trans-
verse momentund, i.e., they occur adg{H+ k4l ,+ x>l
2 'm[_ﬁﬂv +83)%1, (5 —vJ}s=0. Next using either Derrick’s theorem or directly
manipulating the governing equations, one finds that that ac-
where p= k, /k,. For given values of the various involved tually the stationary walking soliton solutions are realized at
parameters, walking solitons exist for nonlinear wave-the value of the HamiltonianH = —(3/5) (x4l + k2l ,)
number shifts above this cutoff. When the maximum in Eq.* (1/5)B13+(4/5)vJ— (1/5)(6,J,+ 63J3). We see that in
(5) is attained on one of the three quantities involved, wethe presence of the walk-off only the fourth term vanishes for
have found that there is an energy threshold for the formaZGfO-VE'OCity solitons, whereas the last two terms contribute
tion of the Wa|k|ng solitons. When the maximum is attainedto the Hamiltonian. This is an indication that the transverse
on at least two of these quantities, there is no energy thresfitomentum of the walking solitons is not simply proportional
old. Figure 2 shows the wave number as a function of the to their velocity, opposite to walking solitons of Galilean
total energy flowl for two representative values of the wave invariant evolution equations. The actual relation between
vector mismatch and for the ratio of the wave numbeps ~ the velocity and the momentum can be found by examining
= k,/k,=0.5. For other values of the parameterthe re-  the evolution of the energy centroid of the coupled state
sults are similar to those shown in Fig. 2. We have alsgonstituted by the two FF beams and the SH beam. Thus the
included in Fig. 2 the curves corresponding to the nonwalkVelocity of type Il SHG walking solitons is given by=[J
ing type Il SHG solitong7,8]. The corresponding plot at — 0212— 9313~ (a+1)J>— (2a5+1)J5)/1. N
exact phase matchingg 0) looks similar to those shown in ~ Next we derive the condition of marginal stability of the
Fig. 2, thus it is not presented here. With a few exceptions, d@mily of solutions by applying a multiscale asymptotic
both negative and positive phase mismatches, the type Method[7]. Let co=co(7)=(u7,v7,wy,uf,v5,Wy)" be the
SHG walking solitons exist only for energy flows exceedingCO|umn vector formed with the stationary walking solitons
certain threshold values, somehow in contrast to some of the
type | SHG walking solitons at positive phase mismatch for 4
which there is no energy threshold for their format{ds®].
However, it is worth emphasizing that this result only holds
for the particular case shown here, but not for the families of
solitons at the other possible values of the various involved

1, (6,+v)? p
K1,cut= Max VP

parameters. For our choice of the parameters here, there is a g

pair of velocities for which there is no threshold for the soli- § NG
ton formation:v =2 (1= /3) for 3=—3, andv =1+ /2 for § p=-3
B=3. This result is a direct consequence of the cut-off for- g

mula (5). Notice that in practice the absence of energy i

threshold for a particular family of solitons has a limited -

relevance, because low-energy solitons have a correspond-
ingly large width, so that for an experimentally reasonable 0
input beam width there is always a threshold for the excita-
tion of solitons.

Important information about the families of walking soli-  FiG. 3. Domains of existence and stability of the families of walking
tons can be obtained from the conserved quantities as fobolitons in the planex; ,v). Here k,=2«; and 8,= 63=1.

velocity
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Up=US+iuf, vo=vi+iv] andwy=w’+iw}, corresponding ics of unstable solitons, but this is beyond the scope of this
to the two FF beams and the SH beam, respectively. Tpaper. The stability criteriofi6) can also be derived using
analyze the stability of these solutions with respect to smalfjeometrical approach¢20,21].

perturbations, we substitute( 5,2) =cy(n) +ec,(7)er’, The output of stability analysis is summarized in Fig. 3
wherec, = (Uy, ,v1, , Wy ,Uqj,01,Wq;) " @nde is a small pa-  for two representative values of the wave vector mismatch
rameter, into Eqs(1) and linearize the resulting equations and for a fixed ratiop of the wave numbers. For positive
obtaining a linear eigenvalue probldne;=\g, whereL isa  mismatch and in the range of velocities shown in Fig. 3, all
self-adjoint operator andg=(uy;,v4j,W4j,— U, ~ U1y, the solitons are stable above their existence (the lower
—w;,)". For A\=0 this eigenvalue problem has three spa-solid curve in Fig. 3. For negative mismatch, all the solitons
tially localized solutionsdcy/dn, (—uf,0,—w?,uf,0ws)T,  that exist above the instability thresholthe dotted line in
and (0-v’,—w’,0p°,W5)T giving the neutrally stable Fig. 3 are stable, whereas the very narrow region between
modes of the linear eigenvalue problem. In order to find &he upper solid line(the existence or cutoff lineand the
threshold condition for the linear instability we consider thatdotted line corresponds to unstable solitons. At exact phase
the instability growth ratex is small, so that we can seek Matching, as for negative mismatch, there is also a very nar-

solutions of the above linear eigenvalue problem in the fornfOW region near the cutoff condition corresponding to un-
of asymptotic series in the small parametar c, Stable solitons. For other values of the paramptesne ob-

:Ejio)\jc(lj), where c(1j)=(uE”,vE”,WEj),ui(” ,Ui(i) ,wi(“)T. tains results similar to those shown in Fig. 3. To monitor the

We introduce also the Serie§=_2j°°:0>\jg(j), where g(j) er:/olutlon of thg stable. andfunstablg slolutlon's, we p;:rformed

= 0 Wi~y 0 “wT. Substituting the the corresponding series of numerical experiments by propa-
A T L LR . . gating a variety of stationary solutions. The numerics

above expansions into the linearized equations and collectin ) .

terms of tphe same order k. we find thg following explicit owed that the unstable solitons either spread or they re-

: ) " : shape and excite a stable walking soliton. To further confirm
analytical solutions for the first-order correctiofis,/d«4,

: - L the robustness of type Il SHG walking solitons, we have
9/ dkz, and dco/dv. The |nstab|llty threshpld condition verified that the solitons with different velocities form under
emerges at the next, second-ordeiinThus, in the second

2)_ 1) i a variety of excitation conditions, e.g., with tilted input
order we get.c;”'=g'. Next we use the following property peams, consistent with the results of previous numerical and
of a self-adjoint operatadr: let a; belong to the kernel space experimental related investigatiofis4].

of the operator. (La,=0) and letb belong to the image In conclusion, we have described the three-parameter
space of the operatdr (La=b), then the vectors, andb  families of (1+1)-dimensional spatial solitary waves due to
are orthogonal to each other. By imposing these orthogonanree-wave mixing in a quadratic nonlinear medium under
ity conditions we are left with a linear homogeneous systemyqnditions for type Il SHG, in the presence of Poynting vec-
of equations, and its solvability condition gives the equationyy yalk-off between the interacting waves. The type | SHG
defining the threshold between stable and unstable threggaiking solitons have curved phase-fronts, with nontrivial

parameter solitary waves, phase-front curvatures and exist for different soliton veloci-
ties and power flows. The remarkable properties of these
y.ly ) li igh ibiliti d licati f
Wt (6)  solitons might open new possibilities and applications o
d(K1,K2,0) solitons in quadratic nonlinear media and of walking solitons

whered(E,F,G)/d(x,y,z) stands for the Jacobian & F,G in analogous but different physical settings.

with respect tax,y,z. Taking into account terms of the next The work of L.T. and L.-C.C. was supported in part by
order in\ in the above asymptotic series will lead to equa-the Spanish Government under Grant No. PB95-0768, and
tions describing linear and nonlinear regimes of the dynamby the Romanian Academy.

[1] Yu. N. Karamzin and A. P. Sukhorukov, Sov. Phys. JEAP 414 [9] C. Conti, S. Trillo, and G. Assanto, Phys. Rev. L&8, 2341(1997.
(1976. [10] W. E. Torruellaset al, Phys. Rev. Lett74, 5036(1995.

[2] R. Schiek, J. Opt. Soc. Am. BO, 1848(1993; M. J. Werner and P. D.  [11] R. Schiek, Y. Baek, and G. . Stegeman, Phys. Re53F1138(1996.
Drummond,ibid. 10, 2390(1993: K. Hayata and M. Koshiba, Phys. [12] R. A. Fuerstet al, Phys. Rev. Lett78, 2756(1997.

Rev. Lett.71, 3275(1993. [13] L. Torneret al, Opt. Lett.20, 1952(1995.
[3] C. R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. AMLB2434  14] . E. Torruellaset al, Opt. Lett. 20, 1949(1995; W. E. Torruellas
(1994; M. A. Karpierz and M. Sypek, Opt. Commu10, 75(1994. et al, Appl. Phys. Lett68, 1449(1996; G. Leo, G. Assanto, and W.
(4] ;é;?{ggg C. R. Menyuk, and G. I Stegeman, J. Opt. Soc. Ari2B E. Torruellas, Opt. Communi34, 223 (1996; A. D. Capobianco

et al, IEEE Photonics Technol. Let®, 602(1997).

[5] A. V. Buryak and Y. S. Kivshar, Opt. Lettl9, 1612 (1994); Phys. [15] L. Torneret al, Opt. Commun138 105 (1997,

Lett. A 197, 407 (1995; Phys. Rev. A51, 41 (1995; Opt. Lett. 20, ! .
10801993 D. P(e"m?vskyy A V. Buryak arf g Y.E’S. }szhar bhys, 1161 L. Tomer, D. Mazilu, and D. Mihalache, Phys. Rev. Lett, 2455
Rev. Lett.75, 591 (1995. (1996.

[6] B. A. Malomed, D. Anderson, and M. Lisak, Opt. Commaz26, 251 [17] D. Mihalacheet al, Opt. Commun137, 113(1997.

(1996. [18] C. Etrichet al, Phys. Rev. E55, 6155(1997).
[7] A. V. Buryak, Y.S. Kivshar, and S. Trillo, Phys. Rev. Lefi7, 5210 [19] N. Akhmediev and M. Karlsson, Phys. Rev.54, 2602(1995.
(1996. [20] L. Torneret al, J. Opt. Soc. Am. Bto be published

[8] A. V. Buryak and Y. S. Kivshar, Phys. Rev. Le®8, 3286(1997). [21] F. V. Kusmartsev, Phys. Reft83 1 (1989.



