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Walking solitons in type II second-harmonic generation
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We find the families of spatial walking solitons propagating in quadratic nonlinear media under conditions
for type II second-harmonic generation in the presence of Poynting vector walk-off between the interacting
beams. The analytical stability criterion for these three-parameter vector solitons is established. We study the
shape and general properties of the solitons and their stability on propagation. It is found that the stationary
solutions arestableat moderate positive phase mismatch. At phase matching and negative phase mismatch
there are some unstable solutions near the cutoff.@S1063-651X~97!51612-6#

PACS number~s!: 42.65.Tg, 03.40.Kf, 42.65.Ky
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Parametric optical solitons in quadratic nonlinear me
@1# have attracted growing attention, because of their po
tial applications to the manipulation of light signals in d
ferent scenarios@2–9#. Such solitons exist in a wide variet
of material and input light conditions in both bulk crysta
and planar waveguides, and recently spatial solitons con
ing of two strongly coupled optical fields have been obser
experimentally in second-harmonic generation~SHG!
@10,11#. Another recent contribution to this rapidly develo
ing field is the demonstration of the spatial modulation
instability of wide elliptical beams and multisoliton gener
tion in quadratic nonlinear media@12#. In general, excep
under suitable conditions, in the low-power regime the pa
metrically interacting beams propagate along different dir
tions due to the Poynting vector walk-off present in anis
tropic media. However, when a soliton is formed the bea
mutually trap and in the presence of Poynting vector wa
off they propagate locked together. Such a beam lock
opens the possibility to specific applications of the solito
@13,14#, and it also poses new questions to the understan
of the soliton formation. The ‘‘walking’’ solitons existing in
the presence of walk-off exhibit new features in comparis
to the nonwalking solitons, and investigation of these f
tures is important from both applied and fundamental vie
points. This is so because the approach has implication
walking solitons existing in other physical settings, such
birefringent optical fibers@15#. To date, two-parameter fam
lies of spatial walking solitons in quadratically nonlinear m
dia have been studied under conditions for type I ph
matching, in both ~111!-dimensional @16# and ~211!-
dimensional geometries@17#. Two-parameter families of~1
11!-dimensional temporal chirped solitons in nonlinear qu
dratic media have been also investigated by using
somewhat different approach@18#.

In this Rapid Communication we investigate the form
tion of spatial walking solitons under conditions for type
SHG; therefore, the solitons exist due to the mutual trapp
of an ordinary polarized fundamental frequency~FF! beam,
an extraordinary polarized FF beam, and the extraordin
polarized second harmonic~SH! beam. Such solitons const
tute a three-parameter family and they exist for different to
energy, for different unbalancing energy between the t
fundamental beams, and for different soliton velocities. W
study the amplitude and phase-front shapes of the solit
561063-651X/97/56~6!/6294~4!/$10.00
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derive the cutoff conditions for the families of solutions, giv
the stability criterion for the three-parameter family of so
tons, and verify numerically its predictions.

The normalized evolution equations for the slowly var
ing field envelopes in type II phase-matching geometries
second-harmonic generation can be written as
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where a1, a2, and a3 are the normalized envelopes of th
ordinary polarized FF beam, the extraordinary polarized
beam, and the SH beam, respectively. For spatial solit
and for the relevant experimental conditions~a characteristic
beam widthh;15 mm, a coherence lengthl c;2.5 mm, a
diffraction length l d;1 mm, and a walk-off angler;1°)
one obtains a1521, a25k1 /k2.21, and a35k1 /k3
.20.5, the mismatch parameterb;63, the walk-off pa-
rametersd2,3;61 andj.20 correspond to a few centime
ters. Equations ~1! have several conserved quantitie
namely, the total energy flow

I 5I 11I 21I 35E S 1

2
uA1u21

1

2
uA2u21uA3u2Dds, ~2!

the energy unbalancingI b5I 12I 2, the transverse beam mo
mentum

J5J11J21J35
1

4i E F S A1*
]A1

]s
2A1
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]s D 1S A2*
]A2

]s
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2A3

]A3*

]s D Gds, ~3!

and the Hamiltonian
R6294 © 1997 The American Physical Society
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FIG. 1. Amplitude and local phase-front tilt of two
solitons walking with different velocities at negativ
wave vector mismatch, versus transverse coordinate
both casesb523, k153, andk1 /k250.5. In ~a! and
~b! v51. In ~c! and ~d! v52(12A3). Solid lines: or-
dinary polarized FF waves; dashed lines: extraordina
polarized FF waves; dotted lines: extraordinary pola
ized SH waves.
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where we have definedA15a1, A25a2, and A3
5a3exp(2ibj).

We study stationary solutions of Eqs.~1! of the form
an(j,s)5Un(h)exp@ifn(j,h)#, n51,2,3, withU and f be-
ing real functions,h5s2vj is the transverse coordinat
moving with the soliton peak, andfn(j,s)5knj1 f n(h).
Herev is the soliton velocity,kn the nonlinear wave-numbe
shifts produced by the wave interaction, andf n(h) stand for
the transverse phase-fronts of the solitons. A simple anal
of the above equations shows that in order to avoid all po
exchange between the waves one first needsk35k11k2
1b. Also the phase-fronts should verify eitherf 3(h)
5 f 1(h)1 f 2(h) everywhere or alternativelyUn(h) and
f n(h) have to be symmetric and antisymmetric functions
h, respectively. Only the trivial traveling-wave solution th
occurs in the absence of the walk-off fulfills the former co
dition, whereas the walking solitons fulfill the latter. Th
trivial traveling-wave solution, which has no physical re
evance unlessa3520.5 and there is no walk-off, has fla
phase-frontsf n(h)5vnh, where v152v/a1, v252(d2
1v)/a2, v352(d31v)/a3. The physically relevant family
is
r

f

-

of walking solitons has nontrivial, curved phase-fronts. T
local phase-front tilts are defined asd fn /dh, n51,2,3. Their
values at infinity are as follows:2v/a1, 2(d21v)/a2 and
2(d31v)/a3. Families of type II SHG walking solitons pa
rametrized by the nonlinear wave-number shiftsk1 andk2,
and soliton velocityv exist at different values of materia
parametersa2,3, b, and d2,3, with different energy flows,
and in a domain of parameter space (k1 ,k2 ,v) such that
k1>2v2/(2a1), k2>2(v1d2)2/(2a2), and k11k2>
2b2(v1d3)2/(2a3). We will make numerical calculations
on ‘‘slices’’ of the above three-dimensional parameter d
main. Thus, calculating on the linesk15rk2, and varying
k1, r, andv we cover the entire three-dimensional parame
domain. In the absence of walk-off, zero-velocity type
SHG parametric solitons were recently investigated@7,8#.
The shape of the walking solitons depends strongly on
various parameters involved, and in particular on their vel
ity. For numerical calculations we seta15a2521, a35
20.5, andd25d351. In Fig. 1 we have plotted the ampl
tude and the local phase-front tilt for two representative s
tons in the case of negative phase mismatch. For the pa
eters chosen in Figs. 1~c!–1~d!, although the mismatch is
negative the amplitude of the ordinary polarized FF beam
larger than the amplitude of the SH beam. Notice that
two solitons plotted in Fig. 1 correspond to the same wa
number shiftsk1,2, but that they carry significantly differen
total energies.

Stationary, walking soliton solutions of Eqs.~1! exist for
nonlinear wave-number shiftsk1, k2 and transverse veloci
ties v such that the soliton is not in resonance with line



r

li-

RAPID COMMUNICATIONS

R6296 56MIHALACHE, MAZILU, CRASOVAN, AND TORNER
FIG. 2. Nonlinear wave numberk1 as a function of
the energy flow for the families of walking solitons fo
different soliton velocities. In all casesk252k1. ~a!
The solitons at negative phase mismatch (b523); ~b!
the solitons at positive phase mismatch (b53). Dashed
lines: unstable solutions. Dotted lines: nonwalking so
tons (d25d350, andv50).
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dispersive waves. Otherwise, the coupling between
waves would lead to energy leakage that would appea
Cherenkov radiation emitted from the soliton@19#. When the
ratio of the two wave numbersk1, k2 is fixed, the resonance
condition can be calculated to obtain

k1,cut5maxH 1

2
v2,r

~d21v !2

2
,

r

11r
@2b1~v1d3!2#J , ~5!

wherer5k1 /k2. For given values of the various involve
parameters, walking solitons exist for nonlinear wav
number shifts above this cutoff. When the maximum in E
~5! is attained on one of the three quantities involved,
have found that there is an energy threshold for the form
tion of the walking solitons. When the maximum is attain
on at least two of these quantities, there is no energy thr
old. Figure 2 shows the wave numberk1 as a function of the
total energy flowI for two representative values of the wav
vector mismatchb and for the ratio of the wave numbersr
5k1 /k250.5. For other values of the parameterr, the re-
sults are similar to those shown in Fig. 2. We have a
included in Fig. 2 the curves corresponding to the nonwa
ing type II SHG solitons@7,8#. The corresponding plot a
exact phase matching (b50) looks similar to those shown in
Fig. 2, thus it is not presented here. With a few exceptions
both negative and positive phase mismatches, the typ
SHG walking solitons exist only for energy flows exceedi
certain threshold values, somehow in contrast to some of
type I SHG walking solitons at positive phase mismatch
which there is no energy threshold for their formation@16#.
However, it is worth emphasizing that this result only hol
for the particular case shown here, but not for the families
solitons at the other possible values of the various invol
parameters. For our choice of the parameters here, there
pair of velocities for which there is no threshold for the so
ton formation:v52(16A3) for b523, andv516A2 for
b53. This result is a direct consequence of the cut-off f
mula ~5!. Notice that in practice the absence of ener
threshold for a particular family of solitons has a limite
relevance, because low-energy solitons have a corresp
ingly large width, so that for an experimentally reasona
input beam width there is always a threshold for the exc
tion of solitons.

Important information about the families of walking so
tons can be obtained from the conserved quantities as
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lows. The dynamical equations~1! constitute an infinite-
dimensional Hamiltonian system and can be written in
canonical formi ]An /]j52dFH/dFAn* , n51,2,3, wheredF

stands for the Fre`chet derivative. The stationary walkin
solitons occur at the extrema of the Hamiltonian for giv
energy flowsI u5I 11I 3/2, I v5I 21I 3/2, and a given trans-
verse momentumJ, i.e., they occur atdF$H1k1I u1k2I v
2vJ%sta50. Next using either Derrick’s theorem or direct
manipulating the governing equations, one finds that that
tually the stationary walking soliton solutions are realized
the value of the HamiltonianH52(3/5)(k1I u1k2I v)
1(1/5)bI 31(4/5)vJ2(1/5)(d2J21d3J3). We see that in
the presence of the walk-off only the fourth term vanishes
zero-velocity solitons, whereas the last two terms contrib
to the Hamiltonian. This is an indication that the transve
momentum of the walking solitons is not simply proportion
to their velocity, opposite to walking solitons of Galilea
invariant evolution equations. The actual relation betwe
the velocity and the momentum can be found by examin
the evolution of the energy centroid of the coupled st
constituted by the two FF beams and the SH beam. Thus
velocity of type II SHG walking solitons is given byv5@J
2d2I 22d3I 32(a211)J22(2a311)J3#/I .

Next we derive the condition of marginal stability of th
family of solutions by applying a multiscale asymptot
method@7#. Let c05c0(h)5(ur

s ,v r
s ,wr

s ,ui
s ,v i

s ,wi
s)T be the

column vector formed with the stationary walking solito

FIG. 3. Domains of existence and stability of the families of walkin
solitons in the plane (k1 ,v). Herek252k1 andd25d351.
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u05ur
s1 iui

s , v05v r
s1 iv i

s andw05wr
s1 iwi

s , corresponding
to the two FF beams and the SH beam, respectively.
analyze the stability of these solutions with respect to sm
perturbations, we substitutec(h,z)5c0(h)1«c1(h)elz,
wherec15(u1r ,v1r ,w1r ,u1i ,v1i ,w1i)

T and« is a small pa-
rameter, into Eqs.~1! and linearize the resulting equation
obtaining a linear eigenvalue problemLc15lg, whereL is a
self-adjoint operator andg5(u1i ,v1i ,w1i ,2u1r ,2v1r ,
2w1r)

T. For l50 this eigenvalue problem has three sp
tially localized solutions]c0 /]h, (2ui

s,0,2wi
s ,ur

s,0,wr
s)T,

and (0,2v i
s ,2wi

s ,0,v r
s ,wr

s)T giving the neutrally stable
modes of the linear eigenvalue problem. In order to find
threshold condition for the linear instability we consider th
the instability growth ratel is small, so that we can see
solutions of the above linear eigenvalue problem in the fo
of asymptotic series in the small parameterl: c1

5( j 50
` l jc1

( j ) , where c1
( j )5(ur

( j ) ,v r
( j ) ,wr

( j ) ,ui
( j ) ,v i

( j ) ,wi
( j ))T.

We introduce also the seriesg5( j 50
` l jg( j ), where g( j )

5(ui
( j ) ,v i

( j ) ,wi
( j ) ,2ur

( j ) ,2v r
( j ) ,2wr

( j ))T. Substituting the
above expansions into the linearized equations and collec
terms of the same order inl, we find the following explicit
analytical solutions for the first-order corrections]c0 /]k1,
]c0 /]k2, and ]c0 /]v. The instability threshold condition
emerges at the next, second-order inl. Thus, in the second
order we getLc1

(2)5g(1). Next we use the following property
of a self-adjoint operatorL: let a0 belong to the kernel spac
of the operatorL (La050) and letb belong to the image
space of the operatorL (La5b), then the vectorsa0 andb
are orthogonal to each other. By imposing these orthogo
ity conditions we are left with a linear homogeneous syst
of equations, and its solvability condition gives the equat
defining the threshold between stable and unstable th
parameter solitary waves,

]~ I u ,I v ,J!

]~k1 ,k2 ,v !
50, ~6!

where](E,F,G)/](x,y,z) stands for the Jacobian ofE,F,G
with respect tox,y,z. Taking into account terms of the nex
order inl in the above asymptotic series will lead to equ
tions describing linear and nonlinear regimes of the dyna
.
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ics of unstable solitons, but this is beyond the scope of
paper. The stability criterion~6! can also be derived usin
geometrical approaches@20,21#.

The output of stability analysis is summarized in Fig.
for two representative values of the wave vector misma
and for a fixed ratior of the wave numbers. For positiv
mismatch and in the range of velocities shown in Fig. 3,
the solitons are stable above their existence line~the lower
solid curve in Fig. 3!. For negative mismatch, all the soliton
that exist above the instability threshold~the dotted line in
Fig. 3! are stable, whereas the very narrow region betw
the upper solid line~the existence or cutoff line! and the
dotted line corresponds to unstable solitons. At exact ph
matching, as for negative mismatch, there is also a very
row region near the cutoff condition corresponding to u
stable solitons. For other values of the parameterr, one ob-
tains results similar to those shown in Fig. 3. To monitor t
evolution of the stable and unstable solutions, we perform
the corresponding series of numerical experiments by pro
gating a variety of stationary solutions. The numer
showed that the unstable solitons either spread or they
shape and excite a stable walking soliton. To further confi
the robustness of type II SHG walking solitons, we ha
verified that the solitons with different velocities form und
a variety of excitation conditions, e.g., with tilted inpu
beams, consistent with the results of previous numerical
experimental related investigations@14#.

In conclusion, we have described the three-param
families of ~111!-dimensional spatial solitary waves due
three-wave mixing in a quadratic nonlinear medium und
conditions for type II SHG, in the presence of Poynting ve
tor walk-off between the interacting waves. The type II SH
walking solitons have curved phase-fronts, with nontriv
phase-front curvatures and exist for different soliton velo
ties and power flows. The remarkable properties of th
solitons might open new possibilities and applications
solitons in quadratic nonlinear media and of walking solito
in analogous but different physical settings.
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